Diversity and Inclusion Guidelines

GEC 2023 is participating in the D&I initiative. Our goal is to all work together to avoid exclusionary examples, create inclusive content, and raise representational diversity in our creative content. The following are tips adopted from ACM SIGMOD 2021.

Inclusion and Diversity in Writing

As a large scientific and technical community that directly impacts many people from different backgrounds around the world, Diversity and Inclusion are crucial for the data management community. ACM explains these goals as follows. Diversity is achieved when the individuals around the table are drawn from various backgrounds and experiences. Diversity leads to a breadth of viewpoints, reasoning, and approaches (also referred to as “the who”). Inclusion is achieved when the environment is characterized by welcoming and embracing diversity (“the how”). Both are important in our writing and other forms of communication, such as posters and talks.


In computing, be mindful of not using language or examples that further the marginalization, stereotyping, or erasure of any group of people, especially historically marginalized and/or under-represented groups (URGs). Of course, exclusionary, or indifferent treatment can arise unintentionally. Be vigilant and actively guard against such issues in your writing. Reviewers will also be empowered to monitor and demand changes if such issues arise in your submissions. Here are some examples of such issues for your benefit:

Examples of exclusionary and other non-inclusive writing to consider avoiding:
  • Implicit assumption: An example of database integrity constraints: “Every person has a mother and a father.” This example is exclusionary and potentially hurtful to single-parent households and people with same-sex parents.
  • Oppressive terminology: Using the term “Master-Slave” to describe a distributed data system architecture can be hurtful to people whose families have suffered the inhumanity of enslavement. This article proposes alternative terms to an oppressive language often used in computer science.
  • Marginalization of URGs: An example of attribute domains: “The Gender attribute is either Male or Female.” This example is exclusionary and potentially hurtful to people who are intersex, transgender, third gender, two-spirit, agender, or have other non-binary gender identities.
  • Lack of accessibility: Using colour alone to convey information in a plot when good alternative data visualization schemes exist. This design strategy can be exclusionary to people who are colour-blind. Please consider using patterns, symbols, and textures to emphasize and contrast visual elements in graphs and figures, rather than using colours alone. Use a colour-blind friendly palette designed with accessibility for visually impaired people. Avoid bad colour combinations such as green/red or blue/purple.
  • Stereotyping: Reinforcing gender stereotypes in names or examples of roles, e.g., using only feminine names or presentations for a personal secretary or assistant roles.

Going further, please also consider actively raising the representation of URGs in your writing. Diversity of representation helps create an environment and community culture that could ultimately make our field more welcoming and attractive to people from URGs. This is a small but crucial step you can take towards celebrating and improving our community’s diversity.

Examples of infusing diversity into writing to consider adopting:
  • Embracing different cultures: Names of people are a visible way to enhance the diversity of representation in writing. Instead of reusing overused names in computing such as Alice and Bob, consider using names from various languages, cultures, and nationalities, e.g., Alvarez and Bano. Avail of the many online resources on this front for ideas, e.g., this article on names across different cultures.
  • Embracing differences in figures: Depictions of people or people-like icons in illustrations are also an excellent way to enhance representation diversity. Consider depicting people of different gender presentations, skin colours, ability status, and other visible attributes of people.
  • Embracing gender diversity in pronouns: Consider using a variety of gender pronouns across your named examples consciously, including “he/him/his,” “she/her/hers,” and “they/them/theirs”. Likewise, consider using gender-neutral nouns when referring to generic roles, e.g., “chairperson” or just “chair” instead of “chairman,” and gender-neutral pronouns for such roles.

Finally, if your work involves data-driven techniques that make decisions about people, please consider explicitly discussing whether it may lead to disparate impact on different groups, especially URGs. Consider examining the ethical and societal implications. For example, see this article discussing the potential for disparate impact of facial recognition in healthcare and strategies to avoid or reduce harm. This SIGMOD Blog article also gives a comprehensive overview of various dimensions and approaches for responsible data management ideas. We hope our community can help permeate this culture of responsibility and awareness about potentially harmful unintended negative consequences of our work within the larger computing landscape.

Acknowledgments and Further Reading